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24 Abstract

25 Lake food web structure dictates the flow of energy and contaminants to top predators, and 

26 addition of invasive species can shift these flows.  We examined trophic position (TP), 

27 proportional reliance on the littoral zone (Proplittoral), and mercury (Hg) concentrations across the 

28 life span of two predatory fishes, walleye (Sander vitreus) and northern pike (Esox lucius), in 

29 lakes with and without invasive virile crayfish (Faxonius virilis).  The littoral was the dominant 

30 foraging zone for both species regardless of size, accounting for 59% and 80% of the diet of 

31 walleye and pike, respectively.  Both species increased in TP and Hg with body size, as did 

32 crayfish.  Walleye in crayfish-present lakes had lower Proplittoral, TP and Hg concentrations 

33 compared with non-present lakes, but trophic magnification of Hg through the food web was 

34 consistent across all six lakes.  These findings underscore a strong role for the littoral zone in 

35 channeling energy and contaminants to higher trophic levels, and how invasive species can 

36 occupy new habitats at low abundance while altering food web structure and contaminant 

37 bioaccumulation.

38  

39 Introduction

40 The structure of lake food webs has important implications for energy flow and 

41 contaminant bioaccumulation (Vander Zanden et al. 1996). Both horizontal and vertical food 

42 web structure play roles in shaping energy flow from primary producers to apex predators. 

43 Fishes act as couplers of littoral and pelagic zones in lakes by deriving energy from both 

44 pathways through their mobile foraging (Schindler and Scheuerell 2002; Vander Zanden and 

45 Vadeboncoeur 2002).  Meanwhile, foraging by fishes at the top of long food chains leads to high 

46 concentrations of potentially harmful compounds such as mercury (Hg) (Cabana and Rasmussen 
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3

47 1994) because concentrations increase roughly 5 to 7 times per trophic level (Lavoie et al. 2013).  

48 Also, differential exposure to some chemicals occurs when organisms forage in different food 

49 web compartments (Kidd et al. 2001).

50 Ontogeny is a key process that dictates feeding patterns in lake fishes.  Many species 

51 display predictable shifts from the pelagic zone as larvae to the littoral zone as adults (King 

52 2005; Jardine et al. 2015).  This shift could affect Hg concentrations because the pelagic zone 

53 can have higher concentrations for a given trophic level (Power et al. 2002; Ethier et al. 2008).  

54 Furthermore, most predatory species exhibit increases in trophic position (TP) throughout their 

55 life span, and for some species, a switch to piscivory occurs very early in development 

56 (Mittelbach and Persson 1998; Post 2003).  Progressive shifts to prey with larger sizes that 

57 occupy higher trophic levels is likely responsible for known increases in Hg concentrations with 

58 size and age in fishes (e.g. Jardine et al. 2012).

59  Invasive species have the potential to modulate food web structure, extend or shorten the 

60 length of food chains, and thereby affect contaminant concentrations of apex predators (Cabana 

61 and Rasmussen 1994; Vander Zanden and Rasmussen 1996).  Non-native crayfish are expanding 

62 their range, affecting aquatic ecosystems in all continents except Antarctica (Phillips et al. 2009; 

63 Lodge et al. 2012).  This includes slow post-glacial expansion by a widely distributed species, 

64 Faxonius virilis (Phillips et al. 2009).  Different species of crayfish can have different mercury 

65 concentrations and energy densities even when they co-occur, suggesting predation on recently 

66 introduced species could alter concentrations in predators (Johnson et al. 2014). Work in the 

67 United States Midwest shows that lakes invaded by crayfish can have predatory fishes that feed 

68 more in the littoral zone and occupy lower trophic positions (Nilsson et al. 2012; Kreps et al. 

69 2016). Ontogenetic shifts in diet within species could directly influence these patterns.
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70 We determined the relative role of ontogeny and the presence of crayfish in determining 

71 feeding ecology and Hg concentrations in predatory fishes in lakes of central Saskatchewan, 

72 Canada.  First, we used stable C isotopes to examine if walleye (Sander vitreus) and northern 

73 pike (Esox lucius) exhibited shifts from the pelagic zone to the littoral zone as they grew.  Next, 

74 we determined patterns in TP using stable N isotopes and assessed whether any shifts were 

75 accompanied by changes in Hg concentrations.  Finally, we evaluated how the presence of 

76 crayfish (F. virilis) affected these three biological endpoints.  We conducted these analyses to 

77 help better understand the implications of changing crayfish distributions, and how individual 

78 foraging behaviour dictates contaminant concentrations.

79

80 Methods

81 Sampling was conducted in 2015 in six prairie lakes (Figure 1), located in South East 

82 Saskatchewan, Canada. The lakes are located in close proximity to each other, are classified as 

83 eutrophic, and share similar substrate, a mixture of mud, sand, gravel and boulder (Water 

84 Security Agency 2016) (Table 1). All are natural lakes with the exception of Theodore Lake, 

85 which is a river valley reservoir. 

86 Crayfish have been slow to recolonize these lakes following glaciation (Phillips et al. 

87 2009), in part because of limited hydrological connectivity to downstream waters.  Populations 

88 in the region become established through a combination of natural recolonization and human 

89 assistance due to connections established by new water conveyance works.  The six lakes have 

90 been actively surveyed in summer since 2007 with snorkel counts of individuals along 10 

91 transects (1 m wide by 10 m long) in 1 – 3 m deep littoral habitats, overturning cobble and other 

92 potential refuge (Table 2). Fishing, Margo and Stoney lakes do not have documented crayfish 
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5

93 populations.  In addition to snorkeling efforts, baited Gee-minnow traps were set in Stoney Lake 

94 for 56 trap days in 2013, in Fishing Lake for 432 trap days in 2015, and Margo Lake for 416 trap 

95 days in 2015 without catching any crayfish. This, in combination with non-detects in cobble 

96 basket sets and kick and sweep surveys suggest that crayfish were absent from these lakes at the 

97 time of study. Crayfish have since accessed Stoney Lake via a narrow connecting channel from 

98 Whitesand Lake, with densities rising to 2 individuals/m2 by 2018 (I. Phillips, unpublished data). 

99 Crayfish are present in Whitesand, Newburn and Theodore lakes.  In addition to densities 

100 ranging from 1 to 44 individuals/m2 from the snorkelling surveys (Table 2), trapping in 2013 

101 yielded a catch-per-unit effort of 2.1 crayfish trap-1 day-1 in Whitesand for two traps set over 20 

102 days.  This value is similar to that for F. virilis in Wisconsin and Michigan lakes (Kreps et al. 

103 2016). For our other two crayfish-present lakes, kick net sweeps in the littoral zone were used as 

104 the main sampling method for this study, and effort was expended only until sufficient numbers 

105 were collected.  Therefore we do not have minnow trap CPUE data for these lakes to compare 

106 with other studies, but densities estimated from snorkeling suggest highest abundance in 

107 Newburn Lake (Table 2).

108 Samples for stable isotope and Hg analysis were collected from various sites in each lake 

109 in the summer of 2015 from mid-June to mid-August. Walleye, northern pike and yellow perch 

110 (Perca flavescens) were collected by angling and using three 60-meter nylon monofilament mesh 

111 gill nets with 10 m increments ranging in mesh size from 1.9 cm to 10.2 cm.  Gill nets were set 

112 perpendicular to shore for ~12-24 hours overnight. All individuals had their stomach contents 

113 briefly inspected for large prey items, and a subsample of each species spanning a size range 

114 representative of the sample was used to collect dorsal muscle tissue samples for stable isotope 

115 analysis (SIA). The proportion of fish with crayfish in their stomachs in the crayfish-absent lakes 
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116 was 0 of 60 for Fishing Lake, 0 of 89 for Margo Lake and 0 of 53 for Stoney Lake.  In the 

117 crayfish-present lakes, it was 4 of 79 for Whitesand, 0 of 44 for Newburn Lake and 13 of 74 for 

118 Theodore Lake. Measurements of fork length and weight were recorded for all fish species.  

119 Using minnow traps, seine netting and kick net sweeps, a size range of crayfish was sub-sampled 

120 for analysis. Kick net sweeps were conducted along the shore for three minutes at a water depth 

121 of approximately 1 m to 1.5 m to capture additional benthic macroinvertebrates. These samples 

122 were later sorted and analyzed in the laboratory with taxa keyed to the lowest possible 

123 designation. We used snails to represent the littoral zone isotope end-member.  For two of the 

124 lakes we used data from a prior sampling event in 2013.  To represent the pelagic zone, 

125 zooplankton were collected monthly with a Wisconsin Net with a hoop diameter of 20 cm, a 

126 length of 90 cm, and mesh size of 80 μm. Vertical tows were repeated until a sufficient sample 

127 was collected for SIA. Samples were later hand sorted in the laboratory to attain a concentrated 

128 zooplankton sample from each lake. All samples were stored frozen until analysis. 

129 Stable Isotope Preparation and Analysis

130 Samples were dried at 60˚C for ~48 hours before being homogenized with a mortar and 

131 pestle. Whole organisms were dried for all samples except adult fish, where representative dorsal 

132 muscle was used. Snails were removed from their shells prior to drying. Once homogenized, 

133 subsamples were weighed into tin capsules (1.0 ± 0.1 mg). SIA was performed at the UC-Davis 

134 Stable Isotope Facility using a continuous flow isotope ratio mass spectrometer (CF-IRMS). 

135 Stable isotope ratios for nitrogen and carbon are reported in delta (δ) notation defined as parts 

136 per thousand or permil (‰) deviation from an international standard. The formula for the delta 

137 (δ) notation is as follows: 

138 δX = [(RSAMPLE / RSTANDARD)-1]*1000 
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139 Where: X is the heavy isotope of the particular element being measured (either 15N for nitrogen 

140 or 13C for carbon); RSAMPLE is the ratio of the heavy isotope to the light isotope for the particular 

141 element in the sample (15N/14N for nitrogen or 13C/12C for carbon); RSTANDARD is the ratio of the 

142 heavy isotope to the light isotope for an international standard (Pee Dee Belemnite limestone for 

143 13C/12C (Craig 1957) and atmospheric nitrogen for15N/14N (Mariotti 1983)). International 

144 standards are set at delta (δ) values of 0‰. Samples analysed in duplicate (n = 20) had an 

145 average difference of 0.3‰ for both 13C and 15N.

146 Calculations and Statistical Analysis 

147 Lipid extraction for animal tissue was not conducted prior to SIA and instead a lipid 

148 correction factor (Logan et al. 2008) was applied following: 13Ccorr = δ13C-[(-

149 2.8317*LN(C/N))+2.8838] where: 13Ccorr is the lipid-corrected value, δ13C is the δ13C value for 

150 the particular sample; -2.8317 and 2.8838 are constants; and C/N equals the elemental carbon to 

151 nitrogen ratio for the particular sample. 

152 For each fish and crayfish, the proportion of the diet derived from the littoral zone was 

153 calculated as Proplittoral = (13Cconsumer – 13Cpelagic)/(13Clittoral – 13Cpelagic) where 13Cpelagic is the 

154 13C value of zooplankton, and 13Clittoral is the 13C value of snails. Trophic position was 

155 determined by accounting for different baseline 15N in the littoral and pelagic zones using: TP = 

156 2 + [15Nconsumer – (15Nlittoral x Proplittoral + 15Npelagic x Proppelagic)]/Δ15N where 15Npelagic is the 

157 15N value of zooplankton, 15Nlittoral is the 15N value of snails, and Δ15N is the trophic 

158 enrichment factor and was estimated as 3.4‰ (Post 2002).

159  Mercury was analysed as total Hg dry weight using a Direct Mercury Analyser (DMA, 

160 Milestone, Inc.).  Samples were weighed at 20 ± 1 mg and thermally decomposed in the DMA 
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161 before amalgamation and atomic absorption. Blanks were less than 50% of the detection limit 

162 (0.04 ng of Hg), and recoveries of two secondary certified reference materials analysed alongside 

163 samples (DORM-4 dogfish liver and IAEA-85 human hair) were 102 ± 6% (n = 24) and 95 ± 1% 

164 (n = 12).

165 All statistical analyses were conducted in SPSS version 25 (Chicago, IL).  To assess the 

166 effects of body size on Proplittoral, TP and total Hg concentrations, we first used ordinary least-

167 squares regressions within lakes.  To test for the effects of crayfish presence on these three 

168 variables we used a general linear model ANOVA with the random factor ‘lake’ nested within 

169 the fixed factor ‘type’ (crayfish present or absent) and length as a covariate, separately for 

170 walleye and northern pike. Mercury concentrations were log-transformed to improve normality 

171 and reduce heteroscedasticity.  To calculate trophic magnification, Hg concentrations of all 

172 organisms in the food web of each of the lakes were regressed against their TPs and a regression 

173 was fit according to Log Hg = m*TP + b.  The slopes of these regressions (m) were then used to 

174 calculate Trophic Magnification Factors (TMFs) using TMF = 10m (Fisk et al. 2001) where TMF 

175 represents the average increase in Hg concentration for each TL (Lavoie et al. 2013).  Slopes and 

176 intercepts were compared among lakes using an Analysis of Covariance with lake as the factor, 

177 log Hg as the response variable, and TP as the covariate. 

178

179 Results

180 Zooplankton and snails appropriately bracketed the 13C values for the fishes (Figure 2).  

181 Across all lakes, mean zooplankton 13C was -31.4 ± 2.8‰ S.D. (n = 77) while snails had 13C = 

182 -27.6 ± 2.0‰ S.D. (n = 131).  Within lakes, the average difference in 13C between the pelagic 

183 and littoral was 4.1 ± 1.1‰ S.D. The 15N value of the two baseline organisms were variable 
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184 across lakes but had similar mean values overall: zooplankton 15N = 8.8 ± 1.9‰ S.D. (n = 77), 

185 snail 15N = 8.2 ± 1.6‰ S.D. (n = 131).

186 Walleye and pike showed strong dependence on the littoral zone in five of the six lakes.  

187 Only Theodore Lake had Proplittoral <0.5 for both species, and Proplittoral averaged 0.59 and 0.80 

188 overall in walleye and pike, respectively (Table 3, Figure 3).  There was limited evidence for 

189 ontogenetic shifts from the pelagic to the littoral, with only walleye in two lakes (Fishing Lake 

190 and Margo Lake) having significant relationships between Proplittoral and body size (Table 4).  

191 Crayfish, when present, had highly variable 13C and Proplittoral across lakes, ranging from <0.0 

192 to >100.0, suggesting error in the estimation of end-member values, feeding on other sources 

193 (e.g. terrestrial inputs) or trophic enrichment outside of typical ranges.  Like the two fish species, 

194 crayfish in Theodore Lake were strongly dependent on the pelagic zone.  In walleye, there were 

195 significant differences in crayfish-present and crayfish-absent lakes, with crayfish-present lakes 

196 having lower Proplittoral (F1,112 = 141.762, p < 0.001), driven largely by low values in Theodore 

197 Lake.  For walleye, length was a significant predictor of Proplittoral (F1,112 = 7.815, p = 0.006), 

198 with larger individuals having higher Proplittoral, but this was not the case for pike (F1,72 = 0.312, 

199 p = 0.578).  Lake type also had no effect on Proplittoral for pike (F1,72 = 0.075, p = 0.784).

200 Both fish species occupied elevated TPs indicative of tertiary consumers, with walleye 

201 (3.94 ± 0.35) having slightly higher mean values than pike (3.77 ± 0.40) and both species 

202 approximately 0.5 to 1.0 TPs above yellow perch that had mean TP = 3.21 ± 0.23.  Walleye 

203 increased almost two TPs over the size range that we captured, but the pattern for pike was less 

204 clear (Table 4, Figure 4).  Overall TPs for walleye, after accounting for the significant effect of 

205 body size as a co-variate (F1,111 = 101.357, p < 0.001), were slightly lower in crayfish-present 

206 lakes (marginal mean TP = 3.88 ± 0.03 SE) compared with crayfish-absent lakes (TP = 4.00 ± 
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207 0.02 SE) (F1,111 = 10.916, p < 0.001), while differences for pike were not significant (F1,72 = 

208 0.157, p = 0.693).  Crayfish were uncommon in the stomachs of both species, appearing in only 

209 two of the 105 walleye and only one of the 46 northern pike examined in crayfish-present lakes, 

210 respectively.  Instead, crayfish appeared more often in the diets of yellow perch, with 15 of 45 

211 individuals having crayfish in their stomachs.

212 Mercury concentrations were high in both species, exceeding the Health Canada 

213 guideline of 0.5 µg/g wet weight in 41% (140 of 343) of cases (Figure 5).  Mean concentrations 

214 for walleye were above the guideline in four of the six lakes, but none of the lakes had pike with 

215 mean concentrations above the guideline (Table 3).  Mercury concentrations increased 

216 consistently with body size for both species (Table 5), and also for crayfish (Figure 6). For the 

217 latter species, this was likely due to increased TP in larger individuals (Figure 6).  Both length 

218 (F1,242 = 234.481, p < 0.001) and lake type (F1,242 = 31.238, p < 0.001) had significant effects on 

219 Hg concentrations in walleye, with lower values in the crayfish-present lakes (marginal mean = 

220 2.1 µg/g dry weight) compared with crayfish-absent lakes (1.6 µg/g dry weight).  While length 

221 also significantly affected Hg concentrations in pike (F1,80 = 99.454, p < 0.001), there was no 

222 crayfish effect (F1,80 = 0.772, p = 0.382).    

223 Trophic magnification of Hg through the food web was strong and consistent across all 

224 lakes (Figure 7). Trophic magnification factors ranged from 3.7 in Stoney Lake to 5.0 in Margo 

225 Lake (Table 6).  The interaction term (lake x TP) in the model was not significant (F = 1.805, p = 

226 0.111), suggesting parallel slopes and equivalent TMFs across lakes regardless of the presence of 

227 crayfish.  After removing the interaction term, TP was significant (F = 1652.86, p < 0.001) and 

228 there was also a significant lake effect (F = 5.977, p < 0.001).  Post-hoc comparisons indicated 
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229 that Fishing Lake had a significantly higher marginal mean than the other five lakes, which did 

230 not differ from each other.  

231

232 Discussion

233 Crayfish were associated with unexpected effects on the habitat foraging of top predators 

234 in our study lakes.  Past work revealed a greater contribution of the littoral zone (benthos) to the 

235 diet of piscivorous fishes when invasive crayfish were in great abundance (Nilsson et al. 2012; 

236 Kreps et al. 2016).  In our case, crayfish presence was associated with more pelagic foraging 

237 rather than littoral foraging, contrary to this earlier work. Much of this was owing to Theodore 

238 Lake, where walleye and pike both fed more in the pelagic zone and at lower trophic levels 

239 compared with other lakes, akin to lake trout shifts following bass invasion (Vander Zanden et 

240 al. 1999).  Crayfish in Theodore Lake also had the lowest trophic level and lowest littoral 

241 contribution, suggesting that the food web in this lake is based more on the pelagic zone. This 

242 lake is a long, narrow river valley reservoir formed by the construction of Theodore Dam.  

243 Brinkmann and Rasmussen (2010) showed that pike aligned more closely with zooplankton in a 

244 narrow Prairie reservoir, and in reservoirs such as this with large shoreline water level 

245 fluctuations, benthic production can be compromised leading to greater use of the pelagic zone 

246 by fishes (Black et al. 2003).  This indicates that lake shape and hydrological regime may be 

247 more important than community membership in driving fish foraging patterns (Dolson et al. 

248 2009), and warrants further investigation.

249 Crayfish forage extensively on benthic macroinvertebrates and they can appear in the diet 

250 of fishes, suggesting they could add a trophic level to the food chain (Phillips et al. 2009; Nilsson 

251 et al. 2012).  Yet Kreps et al. (2016) reported a lower TP for walleye when invasive rusty 
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252 crayfish were present in large numbers, consistent with our findings for F. virilis.  In our case, 

253 the two top predators did not feed on crayfish, instead consuming mostly small fish, Gammarus 

254 sp., or having empty stomachs.  Only yellow perch preyed heavily on small crayfish, particularly 

255 in Theodore Lake, but this did not lengthen the food chain in crayfish-present lakes since yellow 

256 perch were also generally not consumed by walleye and pike.  Larger crayfish escape predation 

257 (Dorn and Mittelbach 1999; Hein et al. 2006) and therefore can act as a trophic “dead-end” in the 

258 food web (Cremona et al. 2008) rather than contributing to biomass production at higher trophic 

259 levels and lengthening food chains.  

260 Crayfish occupied TPs that were approximately one level above herbivores, and TP 

261 increased with body size in all three lakes where they were present.  This is consistent with 

262 earlier studies that concluded crayfish were predators (Whitledge and Rabeni 1997; Roth et al. 

263 2006), and could also indicate that predation on small fish occurs in largest individuals that had 

264 TP > 3.0. It is unknown if crayfish in these systems deplete benthic macroinvertebrate 

265 populations upon invasion, as has been demonstrated elsewhere (Nilsson et al. 2012), but their 

266 relatively low abundance suggests this is unlikely. Crayfish Hg concentrations (mean = 0.32 µg/g 

267 dry weight for all lakes) were within the reported range of 0.1 to 1.4 µg/g dry weight (Mueller 

268 and Serdar 2002; Kouba et al. 2010) and significant, positive relationships between size/age and 

269 Hg concentrations, as we observed here, are common in crayfish populations (Allard and Stokes 

270 1989). 

271 We found little evidence for ontogenetic habitat shifts in our two study fish species.  The 

272 littoral zone accounted for ~60% of the diet of both species across all body sizes, consistent with 

273 earlier estimates for lake fish populations (Vander Zanden and Vadeboncoeur 2002) and further 

274 pointing to the littoral zone as deserving of equal attention as the pelagic zone in governing lake-
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275 wide productivity.  The littoral contribution to diet was higher than expected for both species.  

276 Vander Zanden and Vadeboncoeur (2002) previously reported a limited contribution of 

277 zoobenthos to the diets of these species based on gut contents (14%), where isotope studies were 

278 limited.  However, as piscivores, walleye and pike were believed to consume benthic prey 

279 indirectly by eating fishes from the littoral zone, accounting for ~45% of their diet (Vander 

280 Zanden and Vadeboncoeur 2002).  Our data suggest that this is the case.  Elsewhere, both species 

281 were strongly aligned isotopically with benthic prey in boreal shield lakes (Bertolo et al. 2005) 

282 and % littoral was as high as 96% and never lower than 68% for walleye in four Michigan lakes 

283 (Herbst et al. 2016).  These findings highlight the importance of the littoral zone as a source of 

284 energy and contaminants to higher trophic levels, and how contamination of the nearshore 

285 environment from industrial activity can lead to high concentrations of toxic chemicals in the 

286 tissues of top predators (Eagles-Smith et al. 2008).

287 Both species had lower mean TPs compared to literature summaries (Vander Zanden et 

288 al. 1997; Paradis et al. 2008; Depew et al. 2013a), which is supported by gut content 

289 observations for these lakes and dietary flexibility to include non-fish prey (Beaudoin et al. 1999; 

290 Venturelli and Tonn 2005; Paradis et al. 2008).  Yet despite these relatively low TPs, Hg 

291 concentrations were often above guidelines and greater than median concentrations for the two 

292 species summarized elsewhere (Depew et al. 2013a).  This could be related to slow growth in 

293 these species near the northern edge of their distribution (Lavigne et al. 2010).  Both walleye and 

294 northern pike increased their TP as they grew, leading to higher Hg concentrations in larger, 

295 older fish. The strength of these relationships varied across lakes, suggesting a decoupling of 

296 body size, TP and Hg concentrations at the individual level in some lakes.  Increases in TP with 

297 body size were consistent with expectations that increasing gape size allows consumption of 
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298 larger, higher trophic level prey as fishes attain larger body sizes (Mittelbach and Persson 1998).  

299 Others have argued that 15N could accumulate with age in long-lived fishes independent of 

300 dietary switches to higher trophic levels (Overman and Parrish 2001), but stomach data showed 

301 that the largest walleye in our sample set tended to have fish in their stomachs, further supporting 

302 their position as apex predators in these lakes.

303 There are three possible processes that lead to differential Hg concentrations in top 

304 predators, including stronger trophic magnification through the food web, longer food chains and 

305 higher baseline Hg concentrations (Kidd et al. 2012).  Trophic magnification factors differed 

306 little among lakes, and were very near the global average of 4.7 for total Hg (Lavoie et al. 2013).  

307 Given the similarities in species composition and their geographic proximity to one another, it is 

308 not surprising that TMFs fell in such a narrow range.  Food chain length was also similar at all 

309 lakes, with large walleye occupying the highest TP, though Theodore Lake walleye and pike had 

310 lowest mean TPs and consequently the lowest total Hg concentrations.  A higher baseline 

311 concentration may be responsible for the higher marginal mean observed in Fishing Lake, where 

312 significant flooding had occurred in the two years prior to sampling (Water Security Agency 

313 2016).  This lake also had the highest concentrations in zooplankton and snails at the base of the 

314 food web.  The many individual walleye and pike above the Hg consumption guideline highlight 

315 how prairie lakes are not immune to Hg contamination despite many suggesting that Western 

316 North America has lower atmospheric Hg deposition (Prestbo and Gay 2009) and hence lower 

317 risk to fish-eating consumers (Depew et al. 2013b). Concentrations in the two species were 

318 higher in all six of our study lakes compared with historical provincial records for these lakes 

319 (Depew et al. 2013a).  This could owe, in part to recent high water levels in the region (Water 

320 Security Agency 2016) as flooding of soils and associated organic matter is known to elevate 
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321 baseline Hg concentrations in shallow flooded areas (Hall et al. 2009; Watras et al. in press). 

322 While we have shown that crayfish invasion appears to have modest effects on food web 

323 structure and Hg bioaccumulation, the productive littoral zones of these lakes are clearly 

324 transferring Hg to higher trophic levels.

325 Our work shows effects of F. virilis on food web properties, but other species may have 

326 stronger effects.  For example, rusty crayfish (F. rusticus) likely modify habitats (Wilson et al. 

327 2004; Phillips et al. 2009) more strongly than F. virilis in part because they achieve higher 

328 relative abundance (Kreps et al. 2016).  Because there are little differences among species in 

329 their overall effects (Twardochleb et al. 2013), abundance becomes a key element of an invasive 

330 species’ potential to modify ecosystems (Hansen et al. 2013).  In our lakes, CPUE of crayfish 

331 was well below that measured for F. rusticus in Wisconsin lakes (Nilsson et al. 2012; Kreps et al. 

332 2016), where catch rates were typically 20-40 individuals per trap per day and as high as 70 

333 individuals per trap per day.  As such, provided that invasive crayfish remain at low relative 

334 abundance, their food web effects are likely to be modest.  We recommend additional paired 

335 studies that include measurements of contaminants such as mercury, with more crayfish species 

336 such as F. rusticus that achieve higher abundances (Wilson et al. 2004; Olden et al. 2006). Such 

337 studies will reveal whether we should anticipate additional changes to food webs and 

338 contaminant risks as animal distributions continue to change across the landscape. 

339
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507 Table 1. Characteristics of the six lakes studied

      

Lake Lat Long Crayfish
Area 
(ha)

Mean Depth 
(m) (max)

TP 
(mg/L)

TN 
(mg/L)

Fishing Lake 51.833 -103.533 Absent 3967 25 (NA) 0.060 1.3
Margo Lake 51.816 -103.363 Absent 250 NA (5) 0.090 1.5
Stoney Lake 51.788 -103.364 Absent 286 5 (8) 0.070 1.7
Whitesand Lake 51.764 -103.345 Present 495 3 (11) 0.050 1.6
Newburn Lake 51.693 -103.177 Present 156 NA (6) 0.050 1.6
Theodore Lake 51.453 -102.845 Present  304  NA (NA) NA NA

508

509

510

511

512

513

514

515
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518

519

520

521
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527 Table 2. Estimated crayfish densities (individuals/m2) from snorkel surveys (10 transects per lake) in the six lakes.  Empty cells 

528 indicate that the lake was not surveyed in that year.

          
Year

Lake 2007 2008 2009 2010 2011 2012 2013 2014 2015
Fishing Lake 0 0 0 0 0 0 0
Margo Lake 0 0 0 0 0 0 0 0
Stoney Lake 0 0 0 0 0 0 0 0
Whitesand Lake 3.3 ± 2.5 4.3 ± 2.1 2.2 ± 2.0 3.2 ± 2.0 2.2 ± 1.8 2.2 ± 1.7 2.0 ± 2.2
Newburn Lake 26.0 ± 32.7 43.5 ± 25.8 21.6 ± 22.6 20.2 ± 17.7 25.4 ± 21.5
Theodore Lake   16.4 ± 19.0       

529

530

531

532
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533 Table 3. Mean (± S.D.) body size, trophic position, proportion littoral dependence (Proplittoral) 

534 and total mercury concentrations of walleye and northern pike in six lakes in the Northern Great 

535 Plains.  Assuming 75% moisture, the mercury guideline for human consumption is 2.0 ug/g dry 

536 weight.

Walleye     

Lake Fork length (cm) TP Proplittoral [Hg] (ug/g dry wgt)
Fishing Lake 43.0 ± 3.6 4.07 ± 0.15 0.78 ± 0.09 2.83 ± 1.05
Margo Lake 41.0 ± 5.0 3.81 ± 0.29 0.72 ± 0.14 1.92 ± 0.90
Stoney Lake 40.7 ± 8.0 4.07 ± 0.37 0.53 ± 0.10 2.04 ± 0.58
Whitesand Lake 44.7 ± 4.7 4.09 ± 0.20 0.72 ± 0.06 2.08 ± 0.68
Newburn Lake 46.3 ± 9.5 3.82 ± 0.24 0.58 ± 0.12 2.24 ± 0.89
Theodore Lake 42.6 ± 11.6 3.73 ± 0.36 0.04 ± 0.08 1.80 ± 1.19

Pike     

Lake Fork length (cm) TP Proplittoral [Hg] (ug/g dry wgt)
Fishing Lake 51.2 ± 14.3 3.50 ± 0.26 0.75 ± 0.08 1.56 ± 0.98
Margo Lake 57.1 ± 5.6 3.58 ± 0.24 0.69 ± 0.12 1.38 ± 0.44
Stoney Lake 52.7 ± 3.4 4.12 ± 0.27 0.80 ± 0.17 1.99 ± 0.62
Whitesand Lake 51.6 ± 8.7 3.84 ± 0.41 0.79 ± 0.10 1.69 ± 0.66
Newburn Lake 52.6 ± 6.3 4.02 ± 0.31 0.95 ± 0.21 1.97 ± 0.54
Theodore Lake 39.9 ± 10.0 3.18 ± 0.34 0.45 ± 0.16 0.84 ± 0.30
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27

547 Table 4. Relationship between trophic position and fork length for walleye and pike in the six 

548 study lakes, with regression equations for significant regressions.

Walleye     
Lake Equation r2 p n
Fishing Lake Trophic position = 0.030*fork length+2.72 0.44 0.001 20
Margo Lake Trophic position = 0.025*fork length+2.78 0.34 0.001 27
Stoney Lake Trophic position = 0.031*fork length+2.90 0.75 <0.001 19
Whitesand Lake Trophic position = 0.024*fork length+3.03 0.38 0.001 26
Newburn Lake Trophic position = 0.015*fork length+3.16 0.46 0.045 9
Theodore Lake Trophic position = 0.032*fork length+2.52 0.64 <0.001 18

Pike
Lake Equation r2 p n
Fishing Lake Trophic position = 0.011*fork length+2.95 0.48 0.002 17
Margo Lake 0.02 0.723 10
Stoney Lake Trophic position = -0.066*fork length+7.59 0.60 0.041 7
Whitesand Lake Trophic position = 0.037*fork length+1.92 0.62 <0.001 21
Newburn Lake 0.12 0.186 20
Theodore Lake  0.22 0.532 4
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28

562 Table 5. Relationship between log total Hg concentration and fork length for walleye and pike in 

563 the six study lakes, with regression equations for significant regressions

Walleye     
Lake Equation r2 p n
Fishing Lake Log Hg = 0.036*fork length-1.129 0.64 <0.001 31
Margo Lake Log Hg = 0.036*fork length-1.244 0.53 <0.001 77
Stoney Lake Log Hg = 0.011*fork length-0.142 0.52 <0.001 45
Whitesand Lake Log Hg = 0.016*fork length-0.421 0.35 <0.001 51
Newburn Lake Log Hg = 0.017*fork length-0.465 0.97 <0.001 9
Theodore Lake Log Hg = 0.019*fork length-0.648 0.85 <0.001 35

Pike
Lake Equation r2 p n
Fishing Lake Log Hg = 0.014*fork length-0.567 0.68 <0.001 25
Margo Lake 0.32 0.086 10
Stoney Lake Log Hg = 0.043*fork length-1.994 0.60 0.041 7
Whitesand Lake Log Hg = 0.019*fork length-0.768 0.62 <0.001 21
Newburn Lake Log Hg = 0.009*fork length-0.172 0.22 0.036 20
Theodore Lake  0.75 0.135 4

564

565

566

567

568

569

570

571

572

573

574

575

576

Page 28 of 36
C

an
. J

. F
is

h.
 A

qu
at

. S
ci

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.n

rc
re

se
ar

ch
pr

es
s.

co
m

 b
y 

U
ni

ve
rs

ity
 o

f 
Sa

sk
at

ch
ew

an
 o

n 
01

/2
5/

19
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 T
hi

s 
Ju

st
-I

N
 m

an
us

cr
ip

t i
s 

th
e 

ac
ce

pt
ed

 m
an

us
cr

ip
t p

ri
or

 to
 c

op
y 

ed
iti

ng
 a

nd
 p

ag
e 

co
m

po
si

tio
n.

 I
t m

ay
 d

if
fe

r 
fr

om
 th

e 
fi

na
l o

ff
ic

ia
l v

er
si

on
 o

f 
re

co
rd

. 



29

577 Table 6 Best-fit equations for Log total Hg versus Trophic Position (TP) for six Northern Great 

578 Plains lakes.

Lake Equation r2 p n
Fishing Lake Log Hg = 0.700*TP-2.347 0.94 <0.001 57
Margo Lake Log Hg = 0.703*TP-2.531 0.82 <0.001 56
Stoney Lake Log Hg = 0.567*TP-2.052 0.85 <0.001 36
Whitesand Lake Log Hg = 0.659*TP-2.405 0.85 <0.001 65
Newburn Lake Log Hg = 0.662*TP-2.429 0.82 <0.001 71
Theodore Lake Log Hg = 0.696*TP-2.546 0.78 <0.001 53
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30

598 Figure 1. Location of lakes with crayfish (1 – Fishing Lake, 2 – Margo Lake, 3 – Stoney Lake) 

599 and without crayfish (4 – Whitesand Lake, 5 – Newburn Lake, 6 – Theodore Lake, not shown) in 

600 the Northern Great Plains.
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613 Figure 2. Scatterplot of 13C and 15N values for the food webs of the six lakes. Solid symbols 

614 are fish (circles = walleye, squares = pike, triangles = yellow perch), open symbols are baseline 

615 organisms (circles = zooplankton, triangles = snails) and shaded circles are crayfish.
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32

621 Figure 3. Proportional littoral dependence (Proplittoral) vs. body size for walleye (A) and northern 

622 pike (B) in northern Great Plains lakes with (open symbols) and without (solid symbols) 

623 crayfish.
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626 Figure 4. Trophic position vs. body size for walleye (A) and northern pike (B) in northern Great 

627 Plains lakes with (open symbols) and without (solid symbols) crayfish.
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34

630 Figure 5. Mercury vs body size for walleye (A) and northern pike (B) in northern Great Plains 

631 lakes with (open symbols) and without (solid symbols) crayfish.
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634 Figure 6 Trophic position and log total Hg concentrations in crayfish versus body size in three 

635 northern Great Plains lakes.  Significant regressions are indicated with best fit lines.
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639 Figure 7 Log total Hg concentrations versus trophic position in northern Great Plains lakes with 

640 (open symbols) and without (solid symbols) crayfish.
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